

TABLE OF CONTENTS

TOWARDS A GENERIC MODEL LIBRARY

• Purpose of a generic model library

• What makes a model building block reusable ?

• How to design a reusable model building block ?

• Examples of candidate blocks for the model library

Purpose of a generic model library

The 18 study sites in the SPICOSA program are now well underway with the design of
their ExtendSIM® models to describe a variety of coastal processes ranging from
eutrophication, fisheries, and beach attractiveness to clam culture. A generic model
library is a complete set of reusable model components which can be used to (re)build
coastal models for new study areas, not much unlike the well-known Lego bricks.

The population of such a model library is one of the key challenges of the project and
serves several purposes:

• existing models are easier to expand or maintain
• new models are easier to build
• quick exchange of models within the scientific community
• avoidance of unnecessary modelling (not “reinventing the wheel”)

The principles of generic modelling have been elaborated during the SPICOSA Cluster
Workshops that were held from February 17-20 in Amsterdam and Copenhague. For
more information you can contact the WP8 leader, Jean-Luc de Kok
(jeanluc.dekok@vito.be). See also project deliverable D8.8 for a more detailed
discussion of this topic (internal document for project partners).

What makes a model building block reusable ?

Reusability is a criterion which cannot be quantified precisely, but it is clear that the
degree of case specificness and level of detail are important aspects. The more specific
a component is the more reusable it is. For example, a mathematical operator is
completely reusable, but a coastal model based only on such “low-level” components
will quickly become complex and difficult to understand, and it is much better to build
in different levels of hierarchy in the model. Extend offers the option to restructure
models in so-called hierarchical or H blocks. On the other hand, very large components
capturing, for example, the complete coastal economy with all it details will become
very case dependent thereby limiting their usefulness for application to other study
areas or problems. So an appropriate, intermediate level of hierarchy needs to be
identified for the model components. The examples discussed later will demonstrate
this. In addition to the level of detail there are other important aspects:

• the function and use of the model component should be well documented
• the number of in- and outgoing connectors should be limited
• the implementation is hidden (encapsulation) but documented
• data should separated from the model
• the block has been tested and is robust

22
00
00
99
 -- SS

PP
EE CC

II AA
LL II SS

SS
UU

EE

EX
T
EN

D
S
IM

 5

EX
T
EN

D
S
IM

 5

mailto:jeanluc.dekok@vito.be

How to design a reusable model component ?

A general procedure for designing the block is outlined below:

In principle Extend offers two ways to design the reusable model components: bottom-
up by starting from scratch with the design of the block, or top-down by restructuring
an existing model in hierarchical blocks. The design of a new block can be carried out
with the structure window for designing H blocks, or in the C-like ModL programming
language, which is more technically demanding but also offers more flexibility to add
additional information for the users such as dialog boxes. A good compromise, used by
many study sites, is the Equation block from the Extend Value library: it comes with a
useful comment tab to add documentation.

An important topic discussed during the workshop was data management. Although no
model component can function without data it is not recommended to place model
specific data in the block itself. This makes the block less comprehensible, and will
cause problems when people try to reuse the block and are not aware of the
parameters included. Instead, it is much better to let the model component read its
data from a database, which can be external (e.g. and Excel file) or an internal Extend
database. The general rule of thumb is that (model-specific) parameters should be
read from a database, and that time-dependent state variables should be passed via
the connectors.

A detailed explanation on how to set up, manage and use an Extend database has
been presented during the Cluster Workshop and can be found on the SPICOSA server
under the WP8 directory (internal document for project partners).

Examples of candidate blocks for the model library

Over twenty useful potential candidate blocks for the model library were identified
during the Cluster Workshops. Here we only present some examples. Note that these
blocks still require some restructuring to meet the criteria mentioned above.

 STEP1
Identification of
model building

blocks
Is the information reusable?

STEP2
Remove model specific
parameters and data

Is the block manageable
in size?

STEP3
Construct the block

Is the block self explaining?

STEP4
Implement the block

Is the block working
at all times?

Use your model to identify model blocks
Use duplicated model patterns to identify model blocks
Define functions of the blocks based on state variables

Put all parameters in the dialog
Use connectors for input and output data

Separate data and model

Limit the number of connectors and user defined parameters

Encode in ModL or group generic extend blocks in a H-block
Pay special attention to full documentation of the block

Use the guidelines in deliverable D8.4 & D8.8

Testing, testing, testing

Organize sessions with “foolish” test users

yes

yes

yes

no

no

no

no

STEP1
Identification of
model building

blocks
Is the information reusable?

STEP2
Remove model specific
parameters and data

Is the block manageable
in size?

STEP3
Construct the block

Is the block self explaining?

STEP4
Implement the block

Is the block working
at all times?

Use your model to identify model blocks
Use duplicated model patterns to identify model blocks
Define functions of the blocks based on state variables

Put all parameters in the dialog
Use connectors for input and output data

Separate data and model

Limit the number of connectors and user defined parameters

Encode in ModL or group generic extend blocks in a H-block
Pay special attention to full documentation of the block

Use the guidelines in deliverable D8.4 & D8.8

Testing, testing, testing

Organize sessions with “foolish” test users

yes

yes

yes

no

no

no

no

1. View on an open H-block structure window for a model component describing 1D
advection-diffusion.

2. Candidate model block for the attractiveness of a beach for tourism related to the
water transparency.

3. Example of a candidate block with a box model to describe the estuarine dispersal
of dissolved organic nitrogen in the Scheldt estuary.

4. Example of a candidate block programmed in ModL language to describe the
production of organic nitrogen by cattle farming in the Scheldt catchment. The farm
types and animal categories are read from a database and can be changed without
compromising the functionality of the block.

COLOPHON

This EXTEND Special NEWS ISSUE has been prepared by Jean-Luc de Kok, WP8 (Model
Support) SPICOSA Partner 6 (VITO) jeanluc.dekok@vito.be

An integrated project under
the EU´s 6th Framework

Programme for Research (FP6)
of the European Commission

mailto:jeanluc.dekok@vito.be

	TABLE OF CONTENTS
	COLOPHON

